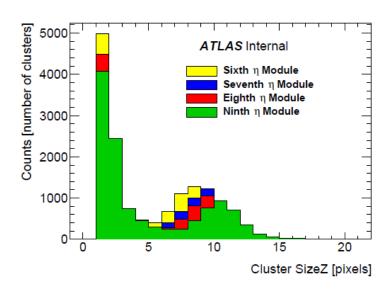
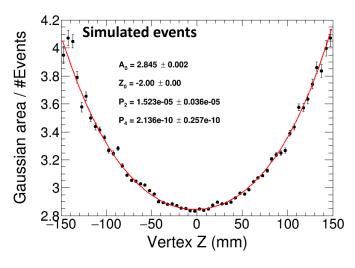

Status of the Pixel-Cluster Counting Luminosity Measurement


Lina Galtieri, Maurice Garcia-Sciveres, Simone Pagan Griso, Wm. Patrick McCormack, <u>Peilian Liu</u>

May 26, 2017

Pixel Cluster Counting (PCC) in IBL


- The luminosity is proportional to the number of pixel clusters
- Only count the clusters in 3D modules in IBL to get better S-B separation

Dependence on beamspot shape

 The number of pixels in the 3D sensors in IBL depends on the interaction location ← different acceptance

(interaction position x and y are well constrained)

 The number of pixel clusters in all 3D sensors produced by the interaction at Z

=
$$A_0 * (1 + p_2 * (z - z_0)^2 + p_4 * (z - z_0)^4)$$

Obtained with the study of simulated single interaction events

(z_0 is the IBL center. $z_0 = -2$ mm in the simulated samples)

- The interaction vertices density in Z is Gauss(Z; μ_z , σ_z) \sim beamspot
- The total number of pixel clusters produced by all interactions

$$= \int A_0 * (1 + p_2 * (z - z_0)^2 + p_4 * (z - z_0)^4) * Gauss(z, \mu_z, \sigma_z) dz$$

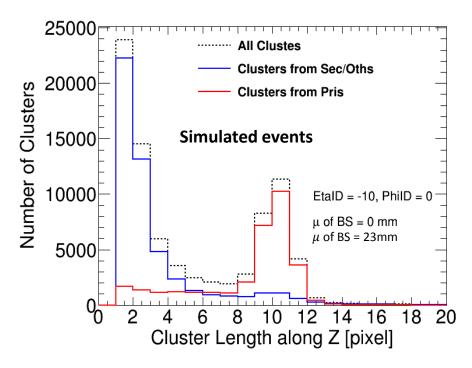
$$= A_0 * \left[\mathbf{1} + p_2 * \left((\mu_z - z_0)^2 + \sigma_z^2 \right) + p_4 * \left((\mu_z - z_0)^4 + 6\sigma_z^2 (\mu_z - z_0)^2 + 3\sigma_z^4 \right) \right]$$

 \clubsuit The obtained area should be corrected to be A_0 which only depends on $<\mu>$

Correction of the beamspot shape dependence

- The area obtained with beamspot $\sim Gauss(\mu_z, \sigma_z)$ should be corrected via:

$$A_0 = \frac{Area}{1 + p_2 * ((\mu_z - z_0)^2 + \sigma_z^2) + p_4 * ((\mu_z - z_0)^4 + 6\sigma_z^2 (\mu_z - z_0)^2 + 3\sigma_z^4)}$$


$$\frac{Gauss(0, \sigma_z)}{1 + \sigma_z^2 + \sigma_z^2 + \sigma_z^2}$$

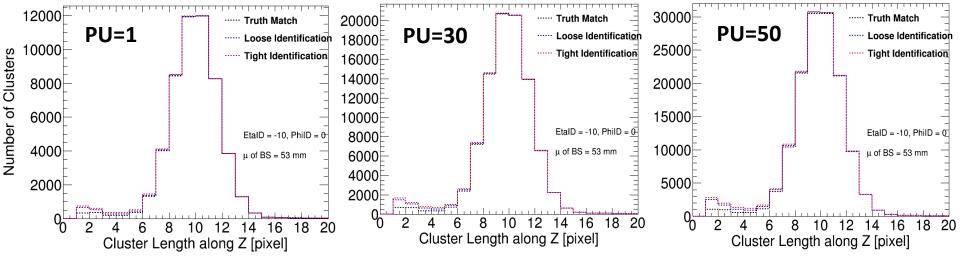
$$\frac{g_z^2 + g_z^2 + g$$

lacktriangledown After the correction, the number of clusters obtained from any beamspot shape is consistent with the expected A_0

Counting truth → Fitting

- The study of MC is performed by counting the clusters from primary particles
- The number of clusters only could be obtained by fitting in the real data due to the bkgs
 - Secondary particles are from the interaction of primaries with the material(barcode>200000)
 - Others: some secondary particles do not have truth information stored for space reasons.
 - "Afterglow": delayed tails of the particle cascade produced in the detector material (not in MC)

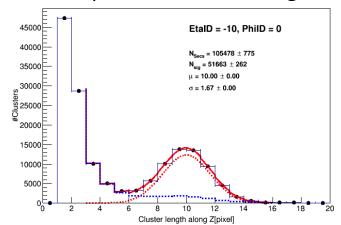
- The cluster length of clusters from primary particles (barcode<200000) are supposed to be a Gaussian
 - Gaussian shape of beamspot
- ✓ Flat tail of the clusters from primary particles
 - Clusters on the module edge
 - Broken clusters
 - Easy to know which clusters are on the edge, but how to identify the broken clusters?


Identification of broken clusters

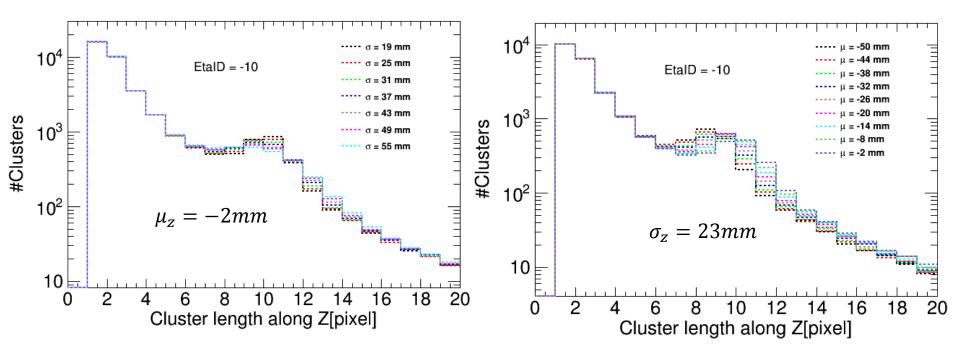
Truth Match

There are other clusters from the same matched truth particles

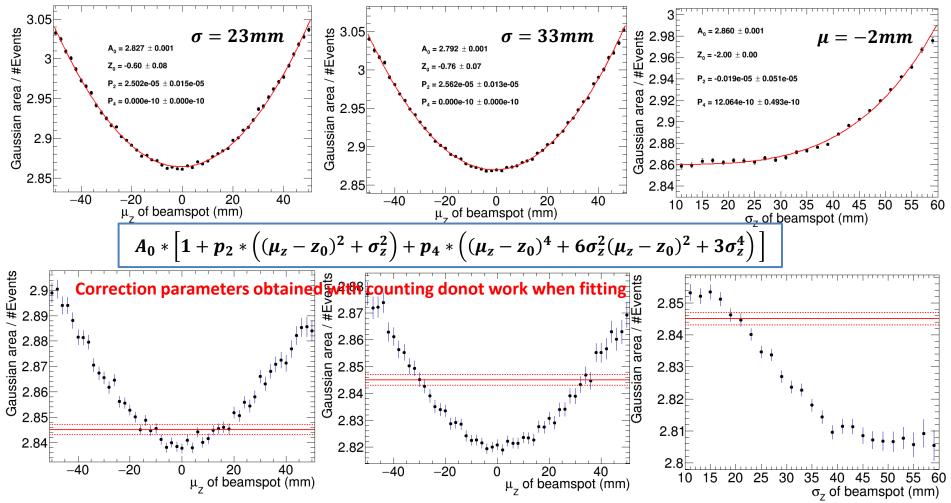
Tight (Loose) Identification independent of truth information


 There are other clusters with one pixel gap along Z relative to this cluster, and some of their hits are in the same (or adjacent) rows

- ✓ Simulated events, Beamspot $\sim \mu_z = 0$, $\sigma_z = 53mm$
- This identification method works even for high pile-up events
 But there are still some clusters in flat tail. Gaussian shape could give it a good description?


How to describe the backgrounds?

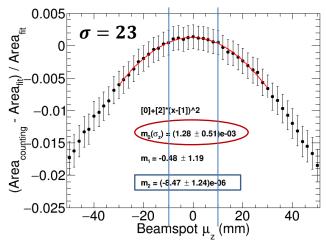
- Backgrounds source
 - Secondary clusters from the interaction of primaries with the material
 - Template derived from MC
 - "Afterglow": delayed tails of the particle cascade produced in the detector material
 - Exponentially falling
 - No simulation of the exponential afterglow in MC
- How to get the template of the secondary clusters
 - All clusters except for those from the primary particles
 - The template of each eta ring is averaged over 14 modules in the same ring

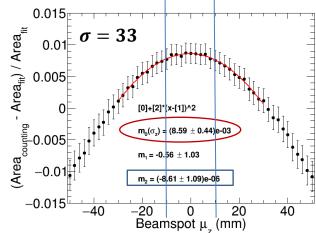

- Fit to MC
 - Gaussian + BkgTemplate

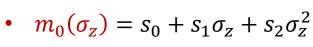
MC-derived template depends on the beamspot shape?

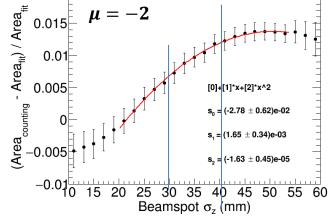
The template slightly depends on the beamspot position and width

Could Gaussian + BkgTemplate well describe MC?




- Expected area (A_0) and correction parameters (p_2,p_4) obtained with different samples are not consistent
 - Due to the BS shape dependence of the BkgTemplate or the flat tail of signal?
 - Deviation of the fit result relative to counting result

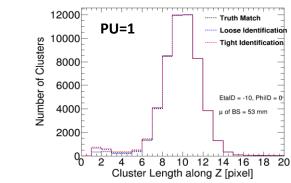

$$\frac{Area_{counting} - Area_{fit}}{Area_{fit}}$$


$\frac{Area_{counting} - Area_{fit}}{Area_{fit}}$

•
$$\frac{\frac{Area_{counting} - Area_{fit}}{Area_{fit}}}{m_0(\sigma_z) + m_2(\mu_z - z_0)^2}$$

$$m_0(\sigma_z = 23) = 1.38e - 03$$

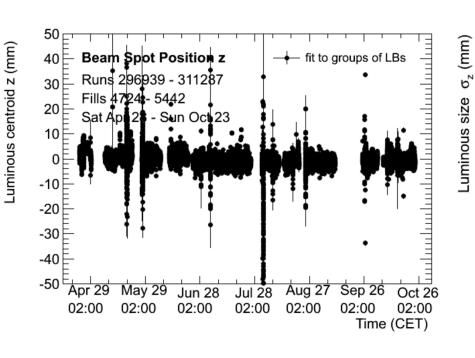
 $m_0(\sigma_z = 33) = 8.72e - 03$

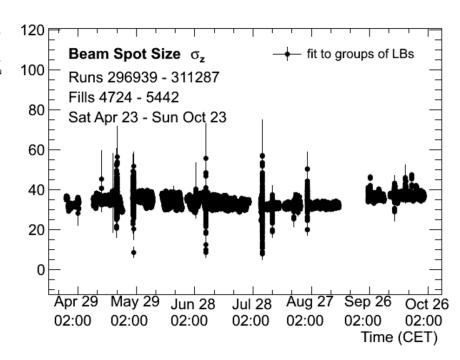

- $Area_{counting} = Area_{fit}(1 + s_0 + s_1\sigma_z + s_2\sigma_z^2 + m_2(\mu_z z_0)^2)$
 - $m_0(\sigma_z)$ obtained in the top two plots are consistent with those in the bottom plot
 - m_2 obtained in the top two plots are consistent with each other

Preparation work before the study of real data

- To validate the correction in real data
 - Need to filter out the cluster on module edge and broken clusters
 - "eta_pixel_index" and "phi_pixel_index" are necessary to identify the broken clusters. But these two variables are missing in the reconstruction of 2016 data to save space
 - Check how larger the DAOD_IDPIXLUMIFile would be after including these two variables
 - Working on 21.0 which is dedicated to 2017 data
 - Adding "eta_pixel_index" and "phi_pixel_index" has lead to 9.1% increase of the DAOD_IDPIXLUMIFILE
 - Ongoing: "Flag_edge" "Flag_broken" → reduce space occupancy

Need to do

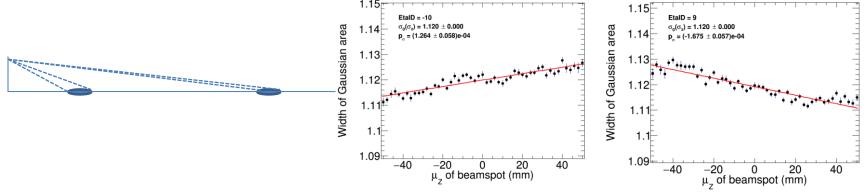

- "afterglow" exponentially falling?
 - Run 276073 has several empty bunch crossings.
 - Separate study of clusters from "afterglow" (BCID after the filled BCID)
- Tail of cluster length even after filtering out on-edge clusters and broken ones

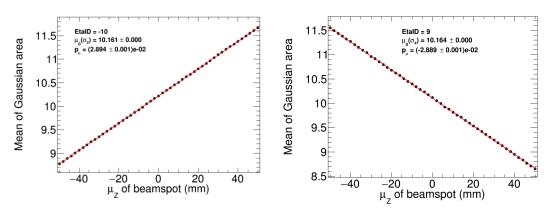


- Could the MC-derived template of secondaries describe the real data?
- Could the fraction of secondaries and "afterglow" be well determined?

Back up

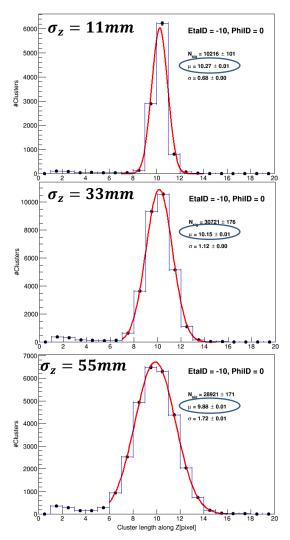
Data2016 13TeV

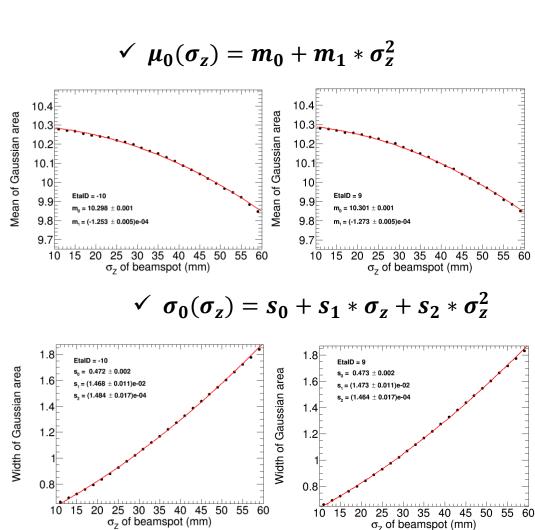



Fix the Gaussian parameters by the fit to clusters from primary particles?

$$\sigma_z = 33$$
 mm, $\mu_z = -50, -48, -46 \dots 50$ mm

- Width of area (σ_A) depends on both the location and width of beamspot: $\sigma_A = \sigma_0(\sigma_z) + p_\sigma * (\mu_z + 2)$
 - $\sigma_0(\sigma_z)$ is only related to the beamspot width (σ_z)
 - σ_A also depends on the beamspot location (μ_Z) because of the different acceptance




- lacktriangle Mean of area depends on both the location and width of beamspot: $\mu_A=\mu_0(\sigma_z)+p_\mu*(\mu_z+2)$
 - μ_0 only depends on the module position? It turns out μ_0 also depends on σ_z (see next page)

$$\mu_z = -2$$
mm, $\sigma_z = 11,13,15 \dots 59$ mm

- Mean of the Gaussian area is expected **not** to depend on σ_z , but it actually is.
 - Due to the remaining flat structure on the left?

beamspot shape dependence of the Gaussian area shape

•
$$\sigma_A = \sigma_0(\sigma_z) + p_\sigma * (\mu_z + 2)$$

 $\sigma_0(\sigma_z) = s_0 + s_1 * \sigma_z + s_2 * \sigma_z^2$

$$\sigma_A = (s_0 + s_1 * \sigma_z + s_2 * \sigma_z^2) + p_\sigma * (\mu_z + 2)$$

•
$$\mu_A = \mu_0 + p_\mu * (\mu_z + 2)$$

 $\mu_0 = m_0 + m_1 * \sigma_z^2$ $\mu_A = (m_0 + m_1 * \sigma_z^2) + p_\mu * (\mu_z + 2)$

- How to determine the parameters has been shown in the fits in last two pages
 - μ_A and σ_A have been averaged over all modules in the same eta ring
 - The parameters are different for different eta rings (refer to the fits in following pages). The parameters of the symmetric eta rings have been averaged.